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Abstract

Screening decisions can be crucial in various situations, such as hiring workers, selling

insurance, or designing policies. If a policy encourages uniform behavior, different peo-

ple behave similarly, which makes learning about them from their behavior impossible.

Choosing whether to screen can be difficult because it requires recognizing and trading

off the benefits of information with the costs of getting it. We investigate whether people

solve this trade-off optimally and what causes their mistakes. We design an online ex-

periment that simulates a hiring scenario with an initial trial task. Participants make

two decisions: first, they select a trial task, which can reveal candidates’ quality at a

small cost, and then choose which candidate to hire. We show that most participants

choose the suboptimal task that does not reveal the candidates’ quality, and this mis-

take persists even with experience and feedback. We test for the mechanisms and show

that insufficient screening is driven by the failures to anticipate inference and to plan

the full strategy.
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I. INTRODUCTION

Screening is important and prevalent in many economic environments. In situations such as

when looking for a new employee, selling insurance, or buying a good of unknown quality, in-

dividuals and organizations take costly steps to learn more about the other party, like doing

lengthy interviews with candidates or offering them multiple contracts at different prices.

In many other situations, however, people do not screen and act with limited information.

The screening decision involves a trade-off. Effective screening—i.e., policies that lead to

different people taking different actions—may be costly, but it reveals valuable information

about them. To illustrate, consider an employer who hires a new employee: Should they

assign difficult or easy tasks to the employee? Difficult tasks, if failed, may come at a

greater cost for the employer, but they allow the employer to gauge the new hire’s abilities.

Similarly, the trade-off in screening is also essential for policy choices. A stringent policy

may force everyone to behave the same way. This uniform behavior would leave no room for

making inferences about people by observing their behavior. For example, if prisons strictly

enforce their rules, every inmate will follow them. This policy may reduce violence within

prisons, but it also destroys information about inmates’ character and their willingness to

follow the law. These signals can be helpful in early parole decisions, but they are lost if

every person behaves the same way.

In this paper, we investigate whether people screen optimally and, if they do not, what

causes their mistakes. The screening trade-off is complicated for several reasons. Let us

expand on the example of an employer deciding whether to assign a difficult or an easy

task to a new employee. On the one hand, assigning a difficult task will reveal information

about the employee’s abilities, which is helpful for future promotion decisions. On the other

hand, there is a higher chance that the employee will fail the task, imposing costs on the

employer. In addition to this trade-off, the employer may avoid assigning difficult tasks for

various reasons. First, the employer may heavily discount the future benefits of information

or be time inconsistent. Second, the employer may be risk-averse and avoid the uncertainty
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inherent in assigning a difficult task to a new employee. Third, strategic considerations,

such as uncertainty about the employee’s response, may also prevent the employer from

assigning a difficult task. Identifying whether people screen optimally has proven difficult

because of these factors.

We hypothesize and experimentally test that people screen too little, even without these

confounding factors. Our hypothesis stems from the intuition that the screening costs are

usually immediate and evident when making a screening decision. At the same time, the

benefits of the extra information are only realized in subsequent decisions and are harder to

recognize. People who do not consider subsequent decisions or do not expect to learn useful

information are likely not to screen (enough).

We test our hypotheses using an online experiment. It allows us to create a controlled

environment to identify participants’ choices as mistakes, which is impossible in an obser-

vational study without additional strong assumptions. The ideal setting needs to involve

an initial choice that reveals information at an implicit cost—the decision to screen or not

to screen—followed by a second choice that makes the information valuable. Moreover, to

argue that not screening a mistake, revealing information at the initial stage must be op-

timal. To achieve this, we design a single-agent, single-period decision problem without

uncertainty that satisfies these criteria. This design ensures we can interpret participants’

choices as mistakes rather than preferences.

The experiment mimics a hiring problem with an initial trial task. Specifically, partici-

pants see two computers and need to hire one after observing their performance on a trial

task. One of the computers is Good, and the other is Bad, but the participant does not

observe which computer is which. The participants make two choices: one in part 1 and

another in part 2. In part 1, they choose one of two trial tasks for the computers to com-

plete: a Screening task or a Pooling task. This choice is our main elicitation of interest. On

a Screening task, the Good computer generates a high payoff for the participant, while the

Bad computer generates a low payoff. On a Pooling task, the Good and the Bad computers
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generate a high payoff for the participant. Thus, the Screening task gives a lower part 1

monetary payoff than the Pooling task, but it reveals the computers’ quality, while the Pool-

ing task does not. In part 2, the participants choose one computer to hire. They receive a

higher payoff if they hire the Good computer and a lower payoff if they hire the Bad com-

puter. Those participants who choose the Screening trial task know which computer is Good,

but those who choose the Pooling trial task do not. This design makes information about

the quality of computers valuable. The trade-off between a lower payoff from the Screening

trial task in part 1 and a higher payoff from the informed hiring choice in part 2 determines

whether getting the information about the computers’ quality is optimal.

The experiment consists of ten rounds, and we focus on six of them, the parameters of

which make the Screening trial task optimal.1 We establish the Screening trial task’s op-

timality as follows. We calibrate the payoffs to make the hiring choice stakes much larger

than the trial task stakes, which is required to make screening worth it. The Screening

task ensures a guaranteed high payoff, while the Pooling task induces a lottery with a much

smaller expected payoff. Thus, participants should prefer the Screening task unless they

are extremely risk-loving.2 Furthermore, our design ensures no scope for time preferences

or strategic reasoning to rationalize the Pooling task choice.

We use two treatments to identify suboptimal screening. In the Baseline treatment, par-

ticipants solve the problem in the order described above. This treatment gives us our esti-

mate of the share of mistakes. However, some mistakes in the Baseline treatment may come

from the experimental noise. To estimate the amount of noise, we run a Strategy Method

control treatment. This treatment helps participants as much as possible in making their

decisions while maintaining the same experiment structure. The Strategy Method treat-

ment allows us to estimate the share of mistakes that can be attributed to experimental

noise, for example, driven by participants’ inattentiveness or trembling hand errors. In this

1Including ten rounds in the experiment allows us to examine the persistence of our results. We mix six
Screening-optimal rounds with four Pooling-optimal rounds to prevent participants from learning to choose
the Screening task mechanically.

2Appendix Table A.1 lists the complete set of parameters used in all rounds.
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treatment, participants solve the problem backward—starting with part 2 hiring choices

conditional on the two possible tasks, and then making part 1 task choice. We also help

participants (i) with making the inference about which computer is of which quality based

on the information available to them, and (ii) with aggregating all payoff consequences of

each task choice. We attribute mistakes in the Strategy Method treatment to noise and use

it as a benchmark for the amount of experimental noise in the Baseline treatment. If our

hypothesis is true, the rate of mistakes in the Baseline treatment should be significantly

higher than in the Strategy Method treatment.

We run the experiment online with 982 Prolific participants and find strong support for

our hypothesis that people screen insufficiently. In round 1, 68% of participants make the

mistake of choosing the Pooling task in the Baseline treatment. In contrast, the mistake

rate in the Strategy Method treatment—which measures experimental noise—is only 18%.

In subsequent rounds, after getting feedback and experience, Baseline participants learn

the optimal strategy only partially. The average mistake rate across rounds 2–10 is 34%

in the Baseline treatment and 21% in the Strategy Method treatment. Both differences are

statistically significant. This result shows that insufficient screening is prevalent and does

not fully disappear even with experience.

We investigate two driving mechanisms of insufficient screening. First, we propose that

when choosing the task in our experiment, people fail to anticipate that they will be able

to infer information about quality. We test the Failure to Anticipate Inference using the

Automatic Inference treatment. This treatment is identical to the Baseline treatment, but

participants automatically receive direct information about which computer is Good and

which is Bad when choosing the Screening task. Participants know about this at the moment

of choosing the trial task. This intervention eliminates the need to make inferences and thus

serves as a diagnostic test for the Failure to Anticipate Inference mechanism.

Second, we test a different mechanism: whether people fail to plan their full strategy.

The optimal choice of the trial task requires participants to plan their strategy for the sub-
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sequent hiring choice. The Failure to Plan is a mechanism that can drive mistakes, and we

test it using the Plan treatment. In this treatment, in contrast to Baseline, participants

simultaneously make both the trial task choice and the hiring choice— as a complete strat-

egy. This treatment forces participants to think ahead and consider the entire strategy, thus

identifying the Failure to Plan mechanism.

Results of the Automatic Inference and the Plan treatments show evidence for the pro-

posed mechanisms. In the Automatic Inference treatment, the mistake rate is much lower

than in Baseline—44% in round 1 and 22% on average in the subsequent rounds. Similarly,

in the Plan treatment, the mistake rate is 36% in round 1 and 19% in the other rounds.

Each mechanism accounts for about half of the mistakes in Baseline in the first round. In

subsequent rounds, the mistake rates in both mechanism treatments are indistinguishable

from the Strategy Method treatment. This result suggests that the interaction of the two

mechanisms prevents complete learning. Even a partial intervention that eliminates one of

the mechanisms is sufficient to help people learn the optimal strategy.

The results are robust to an array of potential concerns. First, we rule out risk-loving

as a possible explanation. We elicit participants’ preferences over the pairs of induced lot-

teries corresponding to the Pooling (risky lottery) and Screening (guaranteed payoff) tasks.

For each parameterization, at least 97% of participants choose the guaranteed payoff corre-

sponding to the Screening task, which rules out risk-loving as a possible driver of the results.

Second, the results are not driven by confusion or misunderstanding of the instructions.

Most participants make few errors in understanding questions, and the results remain the

same on a subsample of participants who make zero errors. Third, the mistakes are not

driven by suboptimal information use, which could justify choosing the Pooling task. Hiring

mistakes are rare, and the results in round 1 are unchanged for the subsample of partici-

pants who choose the Screening task at least once and always use the revealed information

correctly. Lastly, the results are also robust to controlling for demographic characteristics

and education.
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We are closely related to the experimental literature on learning and bandit problems.

This literature studies the exploration-exploitation trade-off—the choice between receiving

a known payoff and an unknown but potentially higher payoff. A similar choice is present in

our experiment. Most bandit literature is theoretical and concerned with finding the right

balance between exploiting actions with known rewards and exploring new actions with

uncertain rewards (see Slivkins et al. 2019 for an introduction). Empirically, there is no

consensus on whether people under-explore or over-explore. Some papers find evidence of

under-exploration (Anderson, 2012; Banovetz, 2020; Hudja and Woods, 2024), while other

do not (Kwon, 2020; Hoelzemann and Klein, 2021). We contribute by providing further

evidence for under-exploration in a more naturalistic framework. In our study, participants

tend to choose the Pooling task—they exploit even though exploration is optimal. Our second

contribution to this literature is identifying the mechanisms behind under-exploration —

Failure to Anticipate Inference and Failure to Plan. Merlo and Schotter 1999 and Merlo and

Schotter 2003 show that people learn less when they receive payoffs for their actions. Our

experiment illustrates this result in a straightforward, non-strategic setting. A small payoff

from the trial task may distract participants from thinking about the hiring stage and the

inference required for it.

We also relate to the behavioral literature on failures of strategic and contingent reason-

ing. People fail to make the right choice in strategic settings, where it requires thinking

about others’ actions and beliefs and learning from others’ behavior (Milgrom and Roberts

1986; Eyster and Rabin 2005; Esponda and Pouzo 2017; Dal Bó et al. 2018; Eyster 2019;

Calford and Cason 2024). We contribute by showing that some of these results are not nec-

essarily tied to a strategic setting. People fail to consider inference and plan their strategy

even in a non-strategic setup. In particular, experimental research has shown that peo-

ple fail to use backward induction in strategic games (Johnson et al. (2002); Binmore et al.

(2002); Levitt et al. (2011); Dufwenberg and Van Essen (2018)). One of the mechanisms we

identify in our experiment—Failure to Plan—is a non-strategic analog of failure of backward
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induction. This mechanism shows that the difficulty of backward induction extends beyond

strategic settings. Literature on failures of contingent reasoning shows that people make

mistakes when they need to evaluate multiple hypothetical scenarios (Esponda and Vespa

2014; Martínez-Marquina et al. 2019). Our paper suggests that the difficulty of contingent

reasoning applies not only to exogenous hypothetical events but also to hypothetical events

arising from an individual’s own choices (Niederle and Vespa, 2023).

The implications of failures to anticipate inference and to plan also relate to other strands

of literature. We speak to the literature on the unintended consequences of policies (Bitler

and Karoly 2015; Nandi and Laxminarayan 2016). It has been shown that external incen-

tives may crowd out intrinsic or ‘warm glow’ motivation (Lepper et al. 1973; Frey and Jegen

2000; Bénabou and Tirole 2006; Ariely et al. 2009). Our findings imply that policy designers

may not realize that strong incentives limit people’s ability to feel good about themselves

based on inferences they can make about themselves, leading to the crowding-out effect.

Stereotypes and wrong beliefs have been shown to be persistent (Snyder 1981; Skrypnek

and Snyder 1982; Babcock et al. 2017). Our paper suggests one mechanism for this persis-

tence. A society may create strong incentives for uniform behavior. As a result, the stereo-

typed group cannot disprove the stereotype, leading to its persistence. Moreover, Bernheim

and Whinston 1998 show that incomplete contracts may be optimal if they allow learning

more about the counterparty than complete contracts. Our results suggest that people are

likely to ignore this channel and write too restrictive contracts. The idea of strong incen-

tives impeding learning is also present in the literature on career concerns (Scharfstein and

Stein 1990; Chevalier and Ellison 1999).

The rest of the paper is structured as follows. Section II describes the experimental de-

sign. Section III summarizes the main results. Section IV tests for the mechanisms. Sec-

tion V shows the robustness of the results. Section VI discusses some implications of the

results and concludes.

8



II. EXPERIMENTAL DESIGN

We design an experiment to test whether people screen too little. Our online experiment

mimics a hiring decision with an initial trial task stage, in which participants choose be-

tween two options, only one of which reveals valuable information at an implicit cost.

II.A. Setting

The experiment needs to have two crucial features to test our hypothesis. First, informa-

tion must be instrumental to make learning valuable. Second, there must be a screening

decision: the participants need to choose a policy where one option provides valuable infor-

mation at some cost while the other does not. This creates the key trade-off in our hypothe-

sis. The participants’ policy choice reveals whether they suboptimally choose the policy that

does not provide information—i.e., do they suboptimally choose not to screen?

Our experimental design incorporates the two features that we describe above. We frame

the experiment as a hiring problem because it is a naturalistic setting where inference is

essential. The participant faces two computers and needs to decide which one to hire. One

of the computers is of Good quality, and the other is of Bad quality. Hiring the Good quality

computer is optimal, but the participant does not know each computer’s quality. However,

the participant can learn the quality by observing the computer’s performance in a trial

task. The participant makes a policy choice: they choose whether the trial task is Pooling

or Screening. If the task is Screening, the participant can infer the computers’ quality at

an implicit cost. The inference happens by observing the payoff that the computer produces

when solving the task. If the task is Pooling, they cannot infer anything.

We use computer players rather than human participants as the experiment’s candidates

because this rules out confounders and improves identification. First, if candidates were hu-

man participants, working on a task would provide experience with that task. This scope for

experience could incentivize participants to choose one trial task over the other, which would
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confound our results. Second, the participants’ social preferences toward human candidates

could affect their choice of trial task and hiring decision. The direction of this confounder is

ambiguous. Third, we need to ensure consistent performance of candidates across tasks—

this is what defines the Good and the Bad candidates. Human candidates’ performance is

likely too inconsistent. As a result, the trial task would reveal little information. We avoid

all these concerns by replacing human candidates with computers. There are no training,

social preferences, or inconsistency concerns with computer candidates.

We run four treatments, described in sections II.E and IV.A. In the following subsection,

we detail the experiment setup that is common to all treatments.

II.B. Experiment Setup

Each round of the hiring problem consists of two stages: the trial task stage, which is the

main decision of interest, and the hiring stage. Figure I illustrates the structure of each

round. The first stage, the trial task stage, allows the participant to infer which candidate

is better. The second stage, the hiring stage, makes this information valuable. Specifically,

two computers, Good and Bad, generate a payoff for the participant by solving tasks. There

are two tasks: Pooling and Screening. In the Pooling task, both computers generate the

same high payoff. In the Screening task, the Good computer generates a high payoff, while

the Bad computer generates a low payoff. Thus, the participant can infer the quality of

each computer by observing the payoffs they generate in the Screening task. This inference

exercise is crucial in our design.

Choosing the Screening task provides information, but it comes at a cost. In the Pooling

task, both computers generate a high payoff. In the Screening task, only the Good computer

generates a high payoff, while the Bad one generates a low payoff. Thus, the participant

faces a trade-off between receiving a lower payoff from the Screening trial task and learning

the computers’ quality.

After choosing the Pooling or the Screening trial task, the participant enters the hiring
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stage, in which knowing the computers’ quality is valuable. At the hiring stage, the task

the computers solve is always the Screening task. The participant then chooses which of

the two computers to hire for another Screening task. In this decision, the stakes are much

higher than in the trial task. The higher stakes justify forgoing a part of the payoff in the

trial task to learn which computer is Good. We discuss the optimal choice of the trial task

in subsection II.C.

Participants face ten rounds of this problem with varying payoff parameters. The first

and last rounds are the same for all participants, and rounds 2–9 appear in random order.

Six parameterizations, including the first and last rounds, follow the description above.

Under these parameters, it is optimal to choose the Screening trial task. For example,

we use the following values in the first round. In the Pooling trial task, both computers

generate $0.05. In the Screening trial task, the Good computer generates $0.05, while the

Bad computer generates $0.00. In the second stage, the Good computer generates $4.30,

while the Bad computer generates only $0.05. The other four parameterizations make it

optimal to choose the Pooling trial task. These parameterizations appear in random order

in rounds 2–9. While our primary interest is the Screening-optimal rounds, we include

Pooling-optimal rounds to prevent participants from mechanically choosing the Screening

trial task without regard for the payoffs. Appendix Table A.1 summarizes the parameter

values in the ten parameterizations. Only one randomly picked parameterization counts

toward the participant’s payoffs. We label the Pooling and the Screening tasks with color

names, e.g., Brown and Blue tasks, and vary them every round.

At the beginning of the experiment, we explain its structure to the participants so they

have all the information to make optimal choices. We carefully explain what decisions the

participants will face, what payoffs they can receive, and what information they will have.

Importantly, the participants know that they will observe the performance of each computer

before the hiring stage. We employ rigorous comprehension checks to verify that the partic-
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Choice of task POOL or SCREEN task

Part 1 (screening choice)

Feedback & Hiring High-stakes task

Part 2 (hiring choice)

Figure I: Diagram of experiment

ipants understand the setup.3

II.C. Pooling is a mistake

The only factor to consider in determining whether Pooling is a mistake is the participant’s

risk preferences because the two trial tasks induce two different lotteries. We show that

participants’ risk preferences are such that choosing the Pooling trial task in the Screening-

optimal rounds is a mistake. Time preferences do not affect the choice of the trial task

because all payments happen at the end of the experiment. Moreover, this is a single-person

decision problem, so strategic considerations also do not matter for the optimal choice.

All six Screening-optimal rounds have similar payoff structures. We use the first round,

which is the same for everyone, to illustrate the payoff consequences. If the participant

chooses the Screening trial task and hires the Good computer, she gets $4.35 with certainty.

If the participant chooses the Pooling trial task, she faces a lottery with equally likely pay-

offs of $4.40 and $0.15. The Screening trial task is optimal unless the participant is suffi-

ciently risk-loving.4 In this and other Screening-optimal rounds, the Pooling task reduces

the expected payoff by at least $2 compared to the Screening task.

We elicit participants’ risk preferences directly to diagnose the strength of our assumption

that the Screening trial task is optimal. Assuming that a direct choice over lotteries better

captures participants’ risk preferences, this exercise supports our claim that choosing the

Pooling task is a mistake.5 After the main part of the experiment, we ask the participants

3All experimental instructions are in Appendix section I.B.
4Assuming CRRA utility, if a person prefers the lottery induced by the Pooling task, they should also prefer

a lottery that pays $101.15 and $0 with equal probability to a certain payment of $100.
5While we find this to be a reasonable assumption, and approaches like this one are not rare in experimen-
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to choose between two lotteries for each of the six Screening-optimal parameterizations: one

is a fixed payoff resulting from the Screening task and hiring the Good computer, and the

other is a lottery resulting from the Pooling task and hiring a computer randomly. Thus, we

elicit participants’ preferences over the induced lotteries in each parameterization. Figure

A.1 in the appendix summarizes the results. Across all six parameterizations, less than 3%

choose the lottery that corresponds to the Pooling trial task.

II.D. Procedures: Online Experiments on Prolific

We recruited all participants on Prolific, an online platform frequently used for research

studies, on October 10th 2023 and April 25th 2024. We restrict the sample to participants in

the USA who are fluent in English and have completed at least 100 previous submissions

on Prolific, with a minimum approval rate of 97%. The experiment was implemented using

the oTree platform (Chen et al., 2016). The study was registered on the AEA RCT registry

with ID AEARCTR-0012230 under the title “The Inference Cost of Interventions.”

We recruited 982 participants on Prolific who were randomly assigned to the four treat-

ments. 251 subjects were assigned to the Baseline treatment, 244 to Strategy Method, 244

to Automatic Inference, and 251 to Plan.6 The average payoff is $6.79, and the median

completion time is 21 minutes, which is equivalent to $19.40 per hour.

We follow the standard procedures to ensure that the results are not driven by misun-

derstanding of the experiment instructions. Participants receive detailed instructions and

must correctly answer a set of understanding questions about them before proceeding. Fig-

ure A.2 in the appendix shows the distribution of mistakes on the understanding ques-

tions. Restricting the sample to participants who make zero mistakes does not affect the

tal economics, Bernheim and Taubinsky 2018 discusses how it can suffer from the circularity trap, by which
“we identify bias by looking for choices that conflict with true preferences while inferring true preferences
from unbiased choices.”

6The sample is balanced on gender. The average age is 42 years. 74% of the sample identify as White and
11% as Black. 53% of the sample have a Bachelor’s degree or higher. Table A.2 in the appendix summarizes
demographic characteristics by treatment.

13



results. Additionally, after the Baseline participants make their part 1 decision, we ask

them whether they will see how much money each computer produced in part 1. Around

71% of the participants answered this question correctly on the first try, confirming that

most participants understand this essential aspect of the experimental design (restricting

to only these participants does not affect the results, as we discuss in section V).

II.E. Baseline and Strategy Method Treatments

We start with two treatments that show that participants do not screen optimally. The

Strategy Method treatment serves as a control and establishes a benchmark for the amount

of noise in the participants’ answers.7 The Baseline treatment shows that participants con-

sistently make wrong choices.

The Baseline treatment identifies insufficient screening in a natural environment. We

design it to mimic the natural order of choices in a naturalistic hiring scenario: The partic-

ipants first choose the trial task, then move on to the hiring stage, where they observe the

payoff each computer generates and choose which one to hire.

As in any experiment, we expect some participants to make the mistake of choosing the

Pooling task for irrelevant reasons, such as lack of attention and trembling hand errors.

We interpret these errors as experimental noise, which artificially increases the rate of mis-

takes. Thus, the mistake rate we observe in the Baseline treatment combines the screen-

ing mistakes caused by stable cognitive errors—which we are interested in—with mistakes

stemming from noise. We need to separate the two to measure the true prevalence of screen-

ing mistakes. We modify the Baseline treatment to measure a benchmark noise level.

To measure this noise benchmark, we design a control treatment called the Strategy

Method treatment. This control treatment is meant to help participants as much as possible

while keeping the structure of the experiment the same. We use the share of participants

7For the Strategy Method to be a good benchmark, we assume the noise in responses to the Baseline and
Strategy Method treatments is similar.
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who still make suboptimal choices in such a scenario as a measure of noise. In the Strat-

egy Method treatment, participants submit their whole strategy, which requires solving the

problem backward. They start with the hiring decision and choose which computer to hire

in each scenario—i.e., when they know the computers’ quality and when they do not. At

this stage, the participants see the labels for the Good and Bad computers following the

Screening task. Next, they complete the first stage, choosing the trial task. At this point,

we remind them about their contingent decisions for the hiring stage. The participants also

see the payoff consequences of their choices next to the two task options, which provides no

new information but helps them conveniently assess the two options. Because the Strategy

Method is such a strong intervention, we attribute any mistakes in this treatment to inher-

ent noisiness and use it to establish the benchmark amount of noise in the experiment.

III. RESULTS: PREVALENCE OF MISTAKES

The Baseline and Strategy Method treatments show that people fail to account for the in-

ference consequences of their policy choices. Most participants—68%—suboptimally choose

the Pooling task, and the mistakes do not disappear entirely with experience.

Choosing the Pooling trial task is a mistake in six of the ten parameterizations. Since we

are interested in documenting insufficient screening, we focus on these six parameteriza-

tions in the rest of the analysis. We expect participants to learn over time from the feedback

and experience. Therefore, we present results separately for round 1 and rounds 2–10. In

rounds 2–10, participants’ choices are affected by learning.

In the first round, most participants make the mistake of forgoing valuable information.

68% of participants choose the Pooling trial task in the Baseline treatment. In the Strategy

Method treatment, only 18% choose the Pooling task. The difference is statistically signifi-

cant (p < 0.001).

There is substantial learning from experience, but mistakes disappear only partially. In

rounds 2–10, the rate of mistakes reduces to 34% in Baseline. It is still significantly higher
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Figure II: Mistake rates in all treatments in round 1 and rounds 2–10. 95% confidence
intervals are shown for the difference from the Baseline treatment and calculated using
standard errors clustered at the participant level. Sample sizes are 251 for Baseline, 244 for
Strategy Method, 244 for Automatic Inference, and 251 for Plan treatments.

than the rate of mistakes in the Strategy treatment, which is 21%. Figure II summarizes

these results. Most of the learning happens after round 1. Figure A.3 shows the rate of

mistakes by round. It stays flat across all rounds in the Strategy Method treatment and

across rounds 2–10 in the Baseline treatment. The difference in the mistake rate between

the Baseline and the Strategy Method treatments is statistically significant in nine out of

ten rounds without accounting for multiple hypothesis testing.

These mistakes are substantial in terms of payoff consequences. By not screening, partic-

ipants leave on the table at least $2, which represents 53% of their average bonus payment.

IV. MECHANISMS: FAILURE TO ANTICIPATE INFERENCE AND FAILURE TO PLAN

In this section, we investigate the mechanisms behind insufficient screening. By our ex-

perimental design, the mistake of choosing the Pooling trial task cannot be attributed to

standard explanations of time inconsistency or risk aversion. It also cannot be caused by

strategic reasoning mistakes or the difficulty of thinking through multiple states of the
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world. To solve the problem correctly, participants must recognize the informational con-

tent in the computers’ performance on the Screening task and use it to plan the strategy.

We separately test for both — whether they fail to anticipate the inference they will be able

to make and whether they fail to plan their strategy. We call these mechanisms Failure to

Anticipate Inference and Failure to Plan. To test Failure to Anticipate Inference, we design

the Automatic Inference treatment, in which we tell the participants that we will make the

inference for them. To test Failure to Plan, we design the Plan treatment, in which we

make participants choose their full strategy from the beginning. These interventions sub-

stantially reduce the mistakes, which supports Failure to Anticipate Inference and Failure

to Plan as mechanisms.

IV.A. Automatic Inference and Plan Treatments

The first hypothesized mechanism is the Failure to Anticipate Inference. This mechanism

suggests that participants do not know they will be able to make inferences in the future:

they do not realize that the Screening trial task provides information that reveals each com-

puter’s quality. Despite this, they may be thinking about part 2 and planning their strategy

for the future. We introduce the Automatic Inference treatment, a light-touch intervention

to the Baseline treatment, to test for Failure to Anticipate Inference.

The Automatic Inference treatment is different from the Baseline treatment in one crucial

way: instead of participants making the inference themselves, we make the inference auto-

matically for them. If the participant chooses the Screening task, we tell them the quality

of each computer before their hiring decision. If the participant chooses the Pooling task,

we do not reveal the computer quality. Participants know this at the trial task stage when

choosing between the Screening and Pooling tasks. Specifically, next to the Screening task

option in the experiment interface, we explain that we will reveal the computers’ quality;

next to the Pooling task option, we explain that we will not. If the hypothesized Failure to

Anticipate Inference mechanism is correct, this additional message at the first stage should
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significantly reduce the mistake rate.

The second hypothesized mechanism is Failure to Plan. Under this mechanism, partici-

pants do not plan their entire strategy when choosing the trial task; instead, they myopi-

cally focus on the immediate choice in front of them. We design the Plan treatment to test

for Failure to Plan.

The Plan treatment changes how we elicit participants’ strategy relative to the Baseline

treatment. We ask participants to choose a complete plan for their strategy from the begin-

ning. Specifically, they choose between three options: (i) Picking the Screening trial task and

hiring the computer that produces the larger amount, (ii) picking the Screening trial task

and hiring the computer that produces the smaller amount, and (iii) picking the Pooling trial

task and hiring one the computers chosen randomly. This elicitation forces participants to

consider the whole problem and plan their entire strategy. If the Failure to Plan mechanism

is correct, this planning tool should also reduce the rate of mistakes relative to the Baseline

treatment.

IV.B. Results: Helping with Inference and Planning Reduces Mistakes

The Automatic Inference and Plan treatments substantially reduce the mistake rate. This

result suggests that the Failure to Anticipate Inference and Failure to Plan mechanisms are

important drivers of insufficient screening. Participants do not understand how to extract

useful information in the future and do not plan the entire strategy.

The mistake rate in the Automatic Inference treatment is significantly lower than in the

Baseline treatment. Figure II compares the mistake rates in all treatments. In the first

round, only 44% of the participants make the mistake of choosing the Pooling task. This

mistake rate is about halfway between the Baseline and the Strategy Method treatments.

Furthermore, we observe complete learning to the same level as in the Strategy Method

treatment. Appendix Figure A.4 shows that the rate of mistakes stays about the same start-

ing with round 2. The difference in the mistake rate from the Baseline is highly significant
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(p < 0.001) in round 1 and in rounds 2–10 combined. Considering each round separately,

the mistake rate is significantly different from the Baseline treatment in seven out of ten

rounds. Thus, the Automatic Inference treatment suggests that the hypothesized Failure to

Anticipate Inference mechanism is important. Participants seem not to understand how to

infer information in the future.

Similarly, the mistake rate in the Plan treatment is significantly lower than in the Base-

line treatment. In the first round, 36% of the participants choose the Pooling trial task,

which is similar to the Automatic Inference treatment8. In the subsequent rounds, partici-

pants learn completely — the mistake rate in rounds 2–10 is similar to the Strategy Method

treatment. Appendix Figure A.5 shows that the rate of mistakes stays about the same

starting with round 2. The difference in the mistake rate from the Baseline is significant

(p < 0.001) in round 1 and in rounds 2–10 combined. Furthermore, comparing round by

round, the mistake rate is significantly lower in the Plan treatment than in the Baseline in

each round separately. Thus, the Plan treatment suggests that the hypothesized Failure to

Plan mechanism is important too. Participants do not seem to plan their entire strategy.

The difference in the average number of mistakes between treatments is driven largely

by the different shapes of the mistake distributions. For each participant, we calculate the

number of mistakes they make in the Screening-optimal rounds (i.e., choosing the Pooling

trial task). Aggregating over all participants within a given treatment, we plot the his-

tograms of the total number of mistakes in Appendix Figure A.6. In contrast to the other

three treatments, a disproportionately large group of participants in the Baseline treatment

always make the mistake of choosing the Pooling task, and a disproportionately small group

of participants never make this mistake.

The group of Baseline participants who always choose the Pooling task mainly drives

the persistence of insufficient screening. These participants never learn that screening is

optimal and consistently avoid screening throughout the experiment. If we remove from

8The difference between Automatic Inference and Plan treatments is insignificant at 5% level.
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the sample participants who never learn, round 1 results remain similar, but the mistake

rate in rounds 2–10 becomes close to statistically indistinguishable in all treatments except

Plan (see column 7 in Table I). This result shows that some participants struggle to learn the

optimal screening choice without aid. As a result, the mistake rate is more persistent in the

Baseline treatment than in the other treatments that eliminate one or several mechanisms.

The results of the two mechanism treatments suggest that participants fail to anticipate

inference and plan their strategies. The two mechanisms seem to be similarly important

drivers of insufficient screening. Therefore, both interventions help participants screen op-

timally.

V. ROBUSTNESS OF RESULTS

We conduct multiple tests to verify the robustness of our results. All results are summarized

in Table I.

Pooling is a mistake. We directly elicit preferences over the induced lotteries, and

almost all participants choose the lottery corresponding to the Screening task. Nevertheless,

a few participants sometimes choose the lottery corresponding to the Pooling task, which

could explain our results. To rule out this possibility, we construct a subsample without

them and re-estimate the magnitude of mistakes. Excluding participants who prefer at

least one lottery induced by the Pooling task does not affect our results (Table I, column (2)).

Participants’ understanding. After reading the instructions, participants had to cor-

rectly answer a set of understanding questions. If they made an error on an understanding

question, they had to correct it before proceeding. This design helps ensure that participants

understand the critical features of the experiment even if they missed them while reading

instructions.

We record the number of errors on the understanding questions and plot its distribution in

Appendix Figure A.2. Most participants make few errors. In particular, 89% of participants

make at most one error, and 56% make zero errors. The small number of understanding
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errors highlights that confusion or misunderstanding was not an issue for most participants.

The average number of mistakes in the Baseline treatment is significantly smaller than in

the Plan treatment and not significantly different from the Strategy Method and Automatic

Inference treatments. The distributions of errors are similar across treatments (Appendix

Figure A.7). Therefore, misunderstanding is unlikely to drive the treatment effects.

We further show that the results are robust to misunderstanding by focusing on the par-

ticipants with perfect understanding—the 546 participants who make zero errors on the

understanding questions. The results remain the same as in the full sample, as shown in

Table I, column (3).

Participants in the Baseline treatment need to understand that they will observe how

much each computer produces before they make the hiring choice. If they fail to understand

this, the Screening trial task is not necessarily optimal. However, asking an understand-

ing question about this at the beginning of the experiment would highlight the connection

between the two parts of the problem. It could shut down the mechanisms that drive in-

sufficient screening. To avoid interfering with the mechanisms, we first elicit participants’

first trial task choice and only then ask the understanding question about whether they will

observe how much each computer produces. As a result, the understanding question does

not affect round 1, but it may bias the mistake rate in rounds 2–10 in Baseline down, which

goes against our hypothesis. We find that 71% answer correctly—they know that they will

observe how much each computer produces before the hiring choice. Restricting the sample

to only those participants who answer correctly does not affect the results, as we show in

column (4) of Table I.

Optimal use of information. Choosing the Screening trial task is optimal only if the

participants use the information it reveals correctly. Therefore, to claim that choosing the

Pooling task is a mistake, we need to show that participants who choose the Pooling task

would still be able to use the information about quality if they got it. An ideal test for this

would be observing participants’ counterfactual hiring choices after the Screening task.
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We approximate this counterfactual scenario by looking at participants’ actual choices

after choosing the Screening task. All Screening-optimal parameterizations are similar,

with the only differences being parameters and task names. Therefore, we treat rounds

where a participant chooses the Screening task as a counterfactual for the rounds where

they choose the Pooling task. Across all treatments, more than 90% of the participants hire

the Good computer after choosing the Screening task (Appendix Figure A.8). The few hiring

mistakes are unlikely to drive the differences in the choice to screen.

Although mistakes at the hiring stage differ across treatments, this does not drive the

differences in the screening decision. Participants in the Baseline treatment make slightly

more hiring mistakes than in the other treatments. These differences are too small to ex-

plain the large differences in the trial task choices. Nevertheless, we verify that the results

are robust to this concern. We restrict the sample to those participants who have chosen

the Screening task at least once and have always hired the Good computer after that. We

interpret this sample as the participants who use the information correctly. Note that it

automatically excludes everyone who always chooses the Pooling task. Round 1 results stay

the same in this subsample as in the whole sample, although the levels of mistake rates

mechanically decrease for all treatments. In the subsequent rounds, most treatment effects

disappear—participants in the Baseline treatment make the same number of mistakes as

in the Strategy Method and Automatic Inference treatments, although still more than in the

Plan treatment (Table I, column (6)). This result is expected because the never-learners

drive the persistence of insufficient screening in the full Baseline sample and are excluded

from this subsample.9

Individual characteristics. We rule out that differences in the samples drive the treat-

ment effects. We elicit participants’ self-reported age, gender, race, and education. The

9An alternative approach is to exogenously reverse the trial task choice from Pooling to Screening, to have
participants who choose Pooling face the consequences of picking the Screening task. Early pilot results show
that most participants hire the Good computer after the trial task choice is reversed from Pooling to Screening.
We chose not to implement this approach in the main experiment for two reasons. First, pilot participants
report high levels of confusion stemming from this exogenous reversal, which could drive mistakes. Second, it
provides a counterfactual only probabilistically, in a small share of rounds.
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Table I: Summary of estimates

Panel A: Round 1 estimates

(1) (2) (3) (4) (5) (6) (7)

Strategy Method -0.50*** -0.51*** -0.53*** -0.49*** -0.49*** -0.49*** -0.47***
(0.04) (0.04) (0.05) (0.04) (0.04) (0.05) (0.04)

Automatic Inference -0.23*** -0.25*** -0.27*** -0.23*** -0.23*** -0.27*** -0.21***
(0.04) (0.04) (0.06) (0.05) (0.04) (0.05) (0.05)

Plan -0.32*** -0.34*** -0.39*** -0.31*** -0.32*** -0.30*** -0.30***
(0.04) (0.04) (0.05) (0.05) (0.04) (0.05) (0.04)

Baseline mistake rate 0.68 0.68 0.66 0.67 0.68 0.63 0.62
N 982 934 546 909 982 742 914

Panel B: Rounds 2–10 estimates

(1) (2) (3) (4) (5) (6) (7)

Strategy Method -0.13*** -0.14*** -0.15*** -0.14*** -0.13*** -0.02 -0.05**
(0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)

Automatic Inference -0.11*** -0.12*** -0.11*** -0.12*** -0.11*** -0.04 -0.05*
(0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)

Plan -0.15*** -0.17*** -0.17*** -0.16*** -0.15*** -0.07*** -0.09***
(0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.02)

Baseline mistake rate 0.34 0.34 0.29 0.35 0.34 0.20 0.23
N 4910 4670 2730 4545 4910 3710 4570

(1): Main sample, (2): Participants who never prefer the lottery induced by the Pooling task, (3):
Participants who make zero mistakes on the understanding questions, (4): Participants who know
that they will observe how much computers produce, (5): Main sample with controls for age, gender,
race, and education level, (6): Participants who make zero mistakes in part 2 hiring choice, (7): Par-
ticipants who choose the Screening task when it is optimal at least once. Robust standard errors in
parentheses for round 1 and clustered by participant for rounds 2–10. p-value<0.1: *, p-value<0.05:
**, p-value<0.01: ***

treatments are balanced on percent female, percent White, and percent college-educated,

but the Plan participants are slightly younger than the Baseline participants (Appendix Ta-

ble A.2). Column (5) of Table I shows the results are robust to controlling for age, gender,

race, and education level.

VI. CONCLUSION

We experimentally show that people do not screen enough, even without time inconsistency,

risk aversion, and strategic interactions. Suboptimal screening significantly diminishes, yet
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persists, with experience and feedback. We further show that two mechanisms drive insuf-

ficient screening. First, participants fail to anticipate that they can infer the computers’

quality. Second, they fail to plan their entire strategy. We run two additional treatments

that shut down each of the mechanisms. Each of these interventions accounts for about half

of the non-noise mistake rate.

Our results suggest that individuals may fail to consider screening effects when choosing

incentives and designing policies. Policies that create strong incentives induce uniform be-

havior, which limits the amount of information that can be learned from observations. Thus,

a trade-off exists between creating strong incentives and losing valuable information. The

inference cost of policy choices is a crucial yet usually overlooked factor.

Consider an illustrative example: if prisons are strict about enforcing good behavior, every

inmate will follow the rules. This policy may reduce violence within prisons, but it also

prevents us from learning about inmates’ qualities and their willingness to follow the law.

Learning such information can be essential for early parole decisions, but it is lost if policies

are so strict that everyone behaves the same. While we cannot irrefutably argue that any

particular policy choice was a mistake because of its inference cost—such a claim would

require careful empirical analysis beyond the scope of this paper—, to the extent that we

identify people screen insufficiently, our results suggest that optimal policies should allow,

on the margin, for more screening opportunities.

We propose several avenues for future research. First, in our experiment, participants

make inferences about computers. While this allows us to keep control, an exciting exten-

sion would be considering inferences about other people or the self in more realistic sce-

narios. Furthermore, it would be interesting to study cases where the party making the

inference differs from the one making the screening choice to shed light on how this affects

the trade-off. As a second direction, it would be interesting to empirically quantify the in-

ference costs of policies in naturally occurring settings, including contexts where the policy

choice is paternalistic. This direction would show the external relevance of our experimen-
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tal results. An important third direction is studying the Failure to Plan in more detail. This

mechanism can affect choices in any dynamic problem. Therefore, it is crucial to understand

to what extent it could explain known mistakes in dynamic choices. A fourth, related, di-

rection is investigating the effects and the demand for planning in dynamic environments.

Usually, committing to a future strategy is seen as a way to overcome time inconsistency.

In our experiment, however, there is no scope for time preferences. Nevertheless, partici-

pants value the ability to plan and benefit from it. This result calls for further investigating

commitment devices and how they may help make optimal dynamic choices.
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A. APPENDIX

A.A. Tables and Figures
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Figure A.1: The share of participants who choose the lottery induced by the Pooling trial
task
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Figure A.2: The distribution of the number of errors on the understanding questions.

Part 1 Part 2

POOL SCREEN, Good SCREEN, Bad Good Bad Optimum

1 0.05 0.05 0.00 4.30 0.05 SCREEN
2 0.05 0.05 0.00 4.45 0.10 SCREEN
3 0.20 0.20 0.15 4.30 0.10 SCREEN
4 0.05 0.05 0.00 4.45 0.10 SCREEN
5 0.05 0.05 0.00 4.35 0.10 SCREEN
6 0.05 0.05 0.00 4.50 0.10 SCREEN
7 2.20 2.20 0.15 0.20 0.20 POOL
8 2.10 2.10 0.00 0.05 0.05 POOL
9 2.00 2.00 0.00 0.05 0.05 POOL

10 2.15 2.15 0.00 0.05 0.05 POOL

Table A.1: Summary of payoff parameters for the ten parameterizations. All values are in
USD terms.
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Figure A.3: Rate of mistakes across rounds with Screening-optimal parameterizations for
Baseline and Strategy Method treatments.
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Figure A.4: Rate of mistakes across rounds with Screening-optimal parameterizations for
Baseline, Strategy Method, and Automatic Inference treatments.
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Figure A.5: Rate of mistakes across rounds with Screening-optimal parameterizations for
all treatments.
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Figure A.6: The distribution of total screening mistakes participants make by treatment.
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Figure A.7: The CDF of total errors on the understanding questions participants make by
treatment.
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Figure A.8: Rate of hiring the Good computer in part 2 after choosing the Screening trial
task by treatment.
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Treatment Age p-val Female, % p-val White, % p-val College, % p-val

Baseline 43.17 52.99 73.31 50.60
Strategy Method 43.72 0.65 49.15 0.40 77.54 0.28 58.05 0.10
Automatic Inference 41.87 0.27 47.13 0.19 74.18 0.83 56.56 0.18
Plan 40.84 0.04 49.00 0.37 71.31 0.62 48.21 0.59

Table A.2: Demographic characteristics (average age, percent female, and percent White)
and share of college-educated by treatment. p-values are calculated for the difference from
the Baseline treatment.
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A.B. Screenshots

This subsection presents the screenshots of the experiment for all four treatments in the

order of their appearance. Pages that are identical for all treatments are grouped together.

The screenshots are structured in the following way:

1. Introduction

2. Main decision—only round 1 (other rounds differ only in numbers and labels)

(a) Baseline treatment

(b) Strategy Method treatment

(c) Automatic Inference treatment

(d) Plan treatment

3. Other elicitations
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Introduction

Figure A.9
Note: All treatments.
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Figure A.10
Note: All treatments.
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Figure A.11
Note: All treatments.
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Figure A.12
Note: Baseline treatment.
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Figure A.13
Note: Strategy Method treatment.
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Figure A.14
Note: Automatic Inference treatment.
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Figure A.15
Note: Plan treatment.
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Figure A.16
Note: All treatments.
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Figure A.17
Note: All treatments.
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Main decision: Baseline treatment

Figure A.18
Note: Baseline treatment.
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Figure A.19
Note: Baseline treatment.
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Figure A.20
Note: Baseline treatment.
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Figure A.21
Note: Baseline treatment.
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Figure A.22
Note: Baseline treatment.
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Main decision: Strategy Method treatment

Figure A.23
Note: Strategy Method treatment.
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Figure A.24
Note: Strategy Method treatment.
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Figure A.25
Note: Strategy Method treatment.
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Main decision: Automatic Inference treatment

Figure A.26
Note: Automatic Inference treatment.

58



Figure A.27
Note: Automatic Inference treatment.
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Figure A.28
Note: Automatic Inference treatment.
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Figure A.29
Note: Automatic Inference treatment.
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Main decision: Plan treatment

Figure A.30
Note: Plan treatment.
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Figure A.31
Note: Plan treatment.
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Other elicitations

Figure A.32
Note: All treatments.
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Figure A.33
Note: Baseline treatment.
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Figure A.34
Note: Plan treatment.
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Figure A.35
Note: All treatments.
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Figure A.36
Note: All treatments.
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Figure A.37
Note: All treatments.
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Figure A.38
Note: All treatments.
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Figure A.39
Note: All treatments.
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